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Abstract Mechanical debris is an important product of friction wear, which is also a crucial

approach to know the running status of a machine. Many studies have been conducted on mechan-

ical debris in related fields such as tribology, instrument, and diagnosis. This paper presents a com-

prehensive review of these studies, which summarizes wear mechanisms (e.g., abrasive wear, fatigue

wear, and adhesive wear) and debris features (e.g., concentration (number), size, morphology, and

composition), analyzes detection methods principles (e.g., offline: spectrograph and ferrograph, and

online: optical method, inductive method, resistive-capacitive method, and acoustic method),

reviews developments of online inductive methods, and investigates the progress of debris-based

diagnosis. Finally, several notable problems are discussed for further studies.
� 2017 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a running machine, failure is unavoidable if maintenance is
not conducted in time. For crucial or expensive machines,
breakdown maintenance could not be allowed because of high

safety risk or economic loss, while time-based preventive main-

tenance may cost much more than the scheme using different

strategies to machines in different health conditions.1 There-
fore, an effective way to have both high reliability and low cost
is to perform condition-based maintenance through offline or

online detection.
To identify machine health condition, the failure mecha-

nism should be known. Among failure modes, wear fault is
the most common type which is unavoidable. Although differ-

ent friction pairs exist in a machine, they are essentially com-
posed of two friction surfaces which move with respect to
each other. Their functions are transferring and transforming

power so that the machine could achieve a specified movement.
During the movement, power is inevitably lost in the move-
ment, which is dissipated as heat and vibration and damages

friction surfaces.2 By ignoring the running-in period, the wear
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rate of a friction pair is almost continuously increasing.3 In the
early stage of this wear process, the friction surface gradually
becomes rough caused by debris generation that will increase

the mechanical vibration. The friction surface is also heated
by the energy released from asperity deformation so the metal
performance of the wear surface would be further degraded.

These two effects lead to that friction wear becomes more
and more severe and finally causes component damage and
system failure.

Many centuries ago, people already knew that wear debris
is generated with a wear process.4 Especially, it was found
nearly a century ago that wear debris is strongly related to
the condition of friction.5 Compared to the other two visible

indicators, temperature and vibration, using wear debris as
an indicator for machine health has some distinguished advan-
tages such as strong relationship to wear surface profile, long

persistence of information, and strong anti-interference capac-
ity. Due to these reasons, using wear debris to investigate the
health conditions of machines has attracted much attention

since 1950s.6 Many detection methods have been developed
in the past few decades that debris information becomes an
important indicator for mechanical health status.7 Currently,

online debris monitoring has been applied in commercial engi-
nes,8 fighters’ engines,9 helicopters’ gearboxes,10 and wind tur-
bines11 to increase system reliability and reduce maintenance
cost.

As many factors such as wear mechanism, debris feature,
detection method, and signal processing and diagnosis tech-
nique affect the accuracy and reliability of debris-based diag-

nosis, it is, therefore, beneficiary to have an overall review
on the research progresses and discuss the key problems and
solutions. In this paper, we will provide an overview on these

issues and summarize their connections. The remaining sec-
tions of this paper are organized as follows. In Section 2, dif-
ferent wear mechanisms for debris generation are investigated.

Section 3 summarizes the relationship between debris features
and wear types. Section 4 introduces the principles of debris
detection. The developments of online inductive methods and
signal processing are reviewed in Section 5. Section 6 presents

the research progresses of debris-based diagnosis. Finally,
some notable problems are discussed in Section 7.

2. Wear mechanisms

In a friction pair, the wear mechanism depends on the load,
sliding speed, hardness and roughness of the wear surface,

lubrication, and so on; meanwhile, the debris feature and wear
type are two external manifestations of the wear mechanism.3

Therefore, the wear mechanism is a key bond to link the debris

feature and wear type. To consider the reasons for debris gen-
eration, the wear mechanism can be classified into three types:
abrasive wear, fatigue wear, and adhesive wear,12 as shown in
Fig. 1.

Abrasive wear usually occurs between soft surfaces and
hard asperities. In this wear type, an asperity is striped and
becomes a debris particle when the asperity is not strong

enough, which generally happens in the running-in period,
and the debris usually is tiny. Otherwise, the asperity may
make scratches on the soft surface and produce a cutting deb-

ris when the asperity is solid, and the debris is usually elon-
gated. An early study13 indicated that the debris volume is

proportional to the load and sliding distance. Further stud-

ies14–16 used the Archard equation to describe the wear rate
shown in Eq. (1). In a stable wear condition, the value of K
is constant. The typical value is in the range of 0.005–0.05 in

two-body wear and tends to be lower than 0.0005 in three-
body wear.3 However, a complete wear test under a nominally
constant condition indicated that the wear rate is variable: the

initial and final stages are high and the middle stage is stably
low, as shown in Fig. 2, which is one of the reasons why the
mechanical failure rate is a Bath Curve.

W ¼ K
PV

H
ð1Þ

whereW is the wear rate, K is the wear coefficient, P is the load
on the friction pair, V is the sliding speed, and H is the hard-
ness of the wear surface.

Fatigue wear generally occurs on periodical contact sur-
faces such as those of bearings and gears. As a periodical force
makes a material fatigue, the wear surface would be broken

into many irregularly blocky debris particles and similar to pit-
ting even grooves. In this case, the wear rate is not too high,
but the vibration will be rapidly increased when pitting is
formed. Therefore, this wear type may easily cause system fail-

ure. Studies of rolling fatigue17–19 indicted that the fatigue ini-
tiation is in 10%–40% of useful life. Furthermore, Leng et al.19

studied growth of fatigue cracks, and found that subsurface

cracks tend to initiate at non-metallic inclusions and their

Fig. 1 Three wear mechanisms.

Fig. 2 Change of the wear rate.
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directions are 20�–30� to the direction of the contact motion.
Finally, a lot of debris particles will be generated when the
cracks extend to the surface. As friction surfaces in a gear

are insufficiently smooth and clear, asperities will raise local
stresses and cause surface pits.20,21 These pits are 5–25 lm deep
and exist on most of the contact area; as a result, a large num-

ber of tiny debris particles are generated in this case.22 By con-
trast, friction surfaces in a bearing are so smooth that the oil
film could separate motion surfaces, which is why the fatigue

damage of a bearing is quite different from a gear’s pitting.
The fatigue form of early bearings is subsurface crack because
of material quality, but now the fatigue form usually is surface
damage caused by debris in lubricant.23,24 Different from a

stable increase in a gear, debris generation in a bearing sud-
denly increases when a macro damage is formed.25

Adhesive wear is a dangerous type, in which a lot of asper-

ities bite each other, and the temperature on the friction sur-
face quickly increases so that wear conditions such as
material property, and lubrication would further deteriorate.26

A four-ball test27,28 indicated that metal transfer obviously
happens in adhesive wear, which means that pieces of metal
are peeled from the friction surface during the wear, and the

debris generally is flat. The rate of adhesive wear also follows
the Archard equation, but the wear coefficient K is in the range

of 5 � 10�3–5 � 10�7. In order to build a model of the wear
coefficient, Rabinowicz29 analyzed the fracture forms of adhe-
sive junction in a micro scale and described their probabilities

based on the stress-strength interference theory to obtain the
wear coefficient in a macro scale. Blau30 studied temperature
effects on adhesive wear in dry sliding contacts, and experi-

mental results indicated that a vicious circle exists between sur-
face temperature and friction wear. Although the rate of
adhesive wear is not too high, the component is easy to break

down suddenly because of increasing friction caused by adhe-
sion. Therefore, adhesive wear is an omen of component fault.

3. Debris features

Through many studies,31–36 engineers found that different
wear behaviors apparently show up in four debris features:

concentration (number), size, morphology, and composition,
as shown in Table 1. Since debris concentration and size both
increase by increasing of wear degree, they can reflect wear
severity and wear rate.31 Meanwhile, debris size can also indi-

cate wear types.34 On the other hand, wear severity and type
depend on wear condition which also determines debris mor-
phology, so debris morphology is related to wear severity

and type even location.35 In addition, different materials are
applied to specified friction pairs to optimize the useful life
for different working conditions36; therefore, wear location

could be estimated through debris composition.
Based on some instruments such as particle counters and

ferrograph, debris concentration and size can be obtained to
demonstrate the wear process.7 However, the processes of each

component are variable because of differences in individuals
and loads; therefore, it is less confident to specify some precise
thresholds to divide wear stages. In order to distinguish differ-

ent wear statuses, Bowen and Anderson systemically studied
the relationship between debris size and wear type.34,37 They
analyzed debris generated from five typical wear types:

Table 1 Relationship between wear features and debris

features.

Debris feature Wear feature

Severity Rate Type Location

Concentration � �
Size � � �
Morphology � � �
Composition �
Note: � means related.

Fig. 3 Five typical debris types.38

Mechanical wear debris feature, detection, and diagnosis 869
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rubbing, cutting, rolling fatigue, combined rolling and sliding,
and severe sliding, as shown in Fig. 3.

The debris features of these five wear types are shown in

Table 2. Rubbing debris comes from normal sliding wear, as
shown in Fig. 3(a). Its equal diameter is 0.5–15 lm, thickness
is 0.15–1 lm, and diameter-to-thickness ratio is from 3:1 to

10:1. Cutting debris is from soft friction surface and dug by
a hard asperity, as shown in Fig. 3(b). The debris is spindly,
of which the width is 2–5 lm and the length is 25–100 lm.

Rolling fatigue wear is caused by periodical rolling contact
(e.g., bearings), where the debris is blocky and flat as shown
in Fig. 3(c). The equal diameter is 10–100 lm and the ratio
between the diameter and thickness is about 10:1. Combined

rolling and sliding wear usually occurs on gear surface, and
the diameter-to-thickness ratio of debris is from 4:1 to 10:1
depending on the involute profile of the gear, as shown in

Fig. 3(d). In this wear type, big debris has a higher percentage
than that of small debris. Severe sliding usually happens in a
friction pair with a high load and a low speed, in which debris

is bigger than 15 lm and the diameter-to-thickness ratio is
about 10:1. In addition, striations and straight edges are
apparent marks in this debris morphology, and the ratio of

large-to-small debris is related to the limit exceeding of surface
stress. This study indicated that debris size could roughly dis-
tinguish wear types, and especially, debris above 15 lm is from
abnormal wear.

Roylance and Pocock39,40 analyzed actual debris in the
range of 1–20 lm based on Ferrograph, and they found that
the Weibull function is suitable to describe the distribution

between debris size and number so that distribution parame-
ters can reflect the wear progress. However, in further studies,
Dempsey et al.25 monitored operations of gears and bearings

by using a MetalSCAN sensor which can online detect oil deb-
ris above 125 lm, and they considered that debris distribution
in the sensitivity range is difficult to distinguish component

statuses between normal and fault. This conclusion conflicts
with the studies of Roylance and Pocock,39,40 which is proba-
bly caused by different detection ranges, but it also indicated
that severe wear at the micro level is prior to apparent damage

at the macro level.
Since debris morphology is closely related to wear type and

has abundant attributes, engineers have studied it through

optical microscopy and scanning electron microscopy, and
they considered that a good way to inspect a wear process is
to classify wear mechanisms or types through attributes.41

Among these attributes, debris thickness42,43 and color44,45

are two obvious ones, but they are not commonly used because
of low cost-effectiveness in their extractions. Conversely,

aspect ratio46 and roundness factor35 are more popular. Since
the range of debris sizes overlaps between different debris
types, more details of debris outlines need to be utilized for
further classification. A sample indicator is the angle defined

Fig. 4 Relationship between debris generation and wear process.69

Table 2 Debris features of five typical wear types.

Wear type Debris feature

Equal diameter (lm) Thickness (lm) Ratio Morphology

Rubbing 0.5–15 0.15–1 3:1–10:1 Tiny

Cutting 25–100 (length) 2–5 (width) 12:1–20:1 Spindly

Rolling fatigue (bearing) 10–100 1–10 10:1 Blocky and flat

Combined rolling and sliding (gear) 4:1–10:1 Irregular

Severe sliding >15 10:1 Striations and straight edges

870 W. HONG et al.
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by three specified points on a debris outline.47 Moreover, a set
of outline sequences is defined as radius differences from the
equal circle so that some analytical methods such as Fourier

transform can be easily applied in a sequence.41,48,49 Based
on the fractal theory, a fractal dimension is obtained through
measuring the perimeter of a debris outline with different step

sizes, which is used to represent the outline feature.50–58 In
addition, surface texture is also an important morphological
attribute,59–63 so debris pictures are processed by grey level

analysis,64 2D fast Fourier transform,65 fractal dimension,66

and pattern recognition.67

Through these valuable studies, the relationships between
wear type, wear mechanism, and debris feature are roughly

known.68 Among them, Bhushan69 summarized the relation-
ship between debris generation and wear process as shown in
Fig. 4, which has practical guiding significance. However,

because of complicated relationships between these three
objects and potential differences on individuals, debris classifi-
cation could only qualitatively determine wear type and mech-

anism. Therefore, how to quantify a wear process is still a
significant challenge.

4. Detection principles

Throughout debris detection techniques, the development is
divided into three stages: offline weighting, offline detection

based on instruments, and online monitoring based on sensors.
In 1950s, engineers regularly collected debris from an oil filter
and then weighted the debris mass to know wear severity.15

As weighting can only get a little information, specific instru-

ments such as spectrograph and ferrograph have been devel-
oped since 1960s. Spectrograph uses the light of debris
burning to identify debris compositions and contents.70 In order

to simplify this instrument, X-ray fluorescence spectrograph
was presented, which uses the light excited from debris and is
more convenient than the original spectrograph.71–73 Ferro-

graph utilizes a gradient magnetic field to orderly deposit debris
particles according to their sizes, and then the distribution and
morphology of debris particles can be measured.7 Although

advanced spectrograph and ferrograph have several advantages
such as rich information, quick respond, and high accuracy,
they are usually offline because of complicated structures, so
the wear state may not be provided in real time. Consequently,

engineers began to study online debris detection since 1980s and
expected to timely obtain the wear state without shutting down
a machine.8,74 As online debris monitoring is a good way to

ensure reliable running and achieve condition-based mainte-
nance, it becomes a hotspot in mechanical fault diagnosis.75

According to measurement principles, online debris detec-

tion can be classified into four types: optical, inductive,
resistive-capacitive, and acoustic methods.

The optical method76–79 includes a pair of light transmitter
and receiver, in which light passes through oil flow as shown in

Fig. 5. As the light could be blocked by a debris particle, the
change of light intensity may reflect the size of the debris par-
ticle. This is the most sensitive method at present, which could

detect above 5-lm debris in a channel of 1.2 mm by 1.6 mm,
but oil transparency and bubbles may seriously affect its result.
In addition, such a small channel will cause heavy throttling,

so this method is not suitable for big flow conditions, e.g.,
above 1 L/min.

The inductive method8,9,74,80–89 is based on electromagnetic

induction, in which debris particles will cause a corresponding
inductive voltage and an inductance change in inductive coils
when the particles go through the sensor, as shown in Fig. 6.

In this method, the inductive voltage and inductance change
are in proportion to the debris size, and different materials
such as ferromagnetic and diamagnetic ones will cause differ-

ent signature phases. Consequently, the inductive method
can provide information about debris sizes and materials.
Overall, the advantages of this method are: (a) high through-
put, (b) roughly distinguishing debris materials, (c) insensitive

to oil quality, and (d) suitable for metal pipes. However, as a
magnetic field is passive so that the field is difficult to be con-
centrated in a specified zone, the sensitivity of the inductive

method is relatively poor as detecting 100 lm debris in a pipe
with a 12 mm diameter.9

In the resistive-capacitive method, a pair of poles is placed

on both sides of oil flow as shown in Fig. 7. The electrical field
will be disturbed when debris particles pass through the sensor,
so debris particles can be detected by measuring resistance90,91

or capacitance92–95 between the two poles. By contrast to a
magnetic field, an electrical field is active so that the field can
be easily limited in a small zone to improve the sensitivity,
and thus this method can detect 10-lm debris in a channel with

a 40 lm height by a 100 lm width.94 Because of different per-
mittivity, this method is sensitive to water rather than bubble.
Although the sensor structure is very simple, this method is not

Fig. 7 Schematic diagram of the resistive-capacitive method.

Fig. 5 Schematic diagram of the optical method.

Fig. 6 Schematic diagram of the inductive method.

Mechanical wear debris feature, detection, and diagnosis 871
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widely applied because the electrical field would accelerate oil

deterioration and oil quality may affect the detection result.
The acoustic method84,92,96,97 is composed of an acoustic

transmitter and an acoustic receiver, which are placed in oil

so that acoustic wave can penetrate through oil flow, as shown
in Fig. 8. A debris particle would distort a part of transmitted
waves and generate some reflex waves when the particle moves
into the sensor. Therefore, the strengths of both transmitted

waves and reflex waves could reflect the debris size. Based on
this method, 75 lm debris could be detected in a channel of
6.5 mm by 6.5 mm, and bubbles could be distinguished from

solid debris by the phase of a received wave.84 However, this
method is difficult to be applied in real systems because oil vis-
cosity, flow speed, and mechanical vibration all may affect its

performance.
A comparison of these four methods is shown in Table 3.

5. Online inductive method

As unique advantages such as high throughput, distinguishing
debris materials, insensitive to oil quality, and suitable for

metal pipes would greatly benefit online debris monitoring,
engineers have paid more attention to the online inductive

method in past thirty years. As early as 1988, Centers and
Price8 monitored the bearing of a GE90 engine through a
Quantitative Debris Monitor (QDM) shown in Fig. 9, which

could separate air and debris from oil flow and detect above
250-lm debris. The study showed a significant value of online

Fig. 9 Quantitative debris monitor.8

Fig. 10 Debris sensor with electromagnetic collection.74

Table 3 Comparison of four detection methods.

Method Detection

accuracy

Advantage Disadvantage

Optical 5 lm in

channel of

1.2 mm �
1.6 mm

High sensitivity,

morphological

information

Affected by bubble

and oil

transparency, low

throughput

Inductive 100 lm in

channel of

12 mm

diameter

High throughput,

distinguish

ferromagnetic and

diamagnetic,

insensitive to oil

quality, suitable

for metal pipe

Low sensitivity

Resistive-

capacitive

10 lm in

channel of

40 mm �
100 mm

Simple structure,

high sensitivity

Affected by water

and oil

transparency,

cause oil

deterioration

Acoustic 75 lm in

channel of

6.5 mm �
6.5 mm

Distinguish

bubble and solid

debris

Affected by oil

viscosity, flow

speed and

mechanical

vibration

Fig. 8 Schematic diagram of the acoustic method.
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debris monitoring, but the insufficient sensitivity of this sensor
was also exposed. At the same period, Chambers et al.74

designed an inductive sensor with an electromagnet for debris

collection, as shown in Fig. 10 (DEMOD: demodulator, ADC:
analog to digital converter, F/V Converter: frequency to volt-
age converter, and PPI: processor peripheral interface). The

electromagnet can collect many small debris particles during
a period and release them together so that the undetectably
small particles could be detected as a big particle. However,

the collected proportion is variable depending on magnetic sat-
uration and debris concentration so that a detection result may
not truly reflect debris generation. In 1990, Flanagan et al.80

presented an evaluation method for debris materials based

on different changes in an inductive coil’s resistance and induc-
tance as shown in Fig. 11 (VFM0: voltage of frequency modu-
lation and VAM0: voltage of amplitude modulation).

Moreover, they validated that the method could detect 100
lm ferrous and 200 lm non-ferrous debris within a pipe with
a diameter of 6 mm. In the following studies, Gas Tops, a

Canadian company, developed a triple-coils sensor called
MetalSCAN shown in Fig. 12 (AC: alternating current), in
which an inductive coil is placed between two driven coils so

that the magnetic field in the inductive coil would be counter-
acted by the opposite driven fields. Therefore, an inductive
voltage will be generated when debris particles pass through
the sensor and disturb the balance. In addition, this sensor

can distinguish ferromagnetic and diamagnetic debris through
the phase of debris signature. The experiment verified that the
sensor could detect above 125 lm ferrous debris within a pipe

with a diameter of 1/2 inch.9

However, the related studies3,68,77 indicated that the debris
size is between 1 and 20 lm in normal wear and between 50
and 100 lm in abnormal wear. Especially, debris particles

above 200 lm are probably generated in the late stage of the
mechanical useful life.8 In order to increase confidence for
diagnosis results and schedule maintenance leisurely, the sensi-

tivity of the inductive method should be improved. For this
goal, Du et al.81,82 analyzed the magnetic field generated by
a coil with different ratios of length to diameter, and they pro-

posed that a low length-to-diameter ratio could benefit sensi-
tivity, so they presented two sensor structures shown in
Fig. 13 (LCR Meter: inductance-capacitance resistance meter,
PDMS: polydimethylsiloxane, H: height of the flow channel,

and L: length of the flow channel). The experiment indicated
that their sensors could detect above 50 lm debris within a
channel with a 250 lm height by a 500-lm width or a pipe with

a diameter of 1.2 mm. Soon later, they used the LC resonance
method to improve sensitivity as shown in Fig. 14 (Cp: capac-
itance) so that 20-lm ferromagnetic debris and 55 lm diamag-

Fig. 14 LC resonance method to improve sensitivity.85

Fig. 11 An evaluation method for debris materials.80

Fig. 12 Schematic diagram of debris sensor MetalSCAN.

Fig. 13 Two debris sensor structures with high sensitivity.81,82

Mechanical wear debris feature, detection, and diagnosis 873
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netic debris can be detected in the previous pipe.85 However,
the flow capacity of this method is only 3 mL/min, which
may not satisfy online debris detection. Therefore, Zhe’s

research group used parallel sensing in multiple channels to
promote the flow capacity as shown in Fig. 1583,88 (1. signal
input/output, 2. control signal A1, 3. control signal A2, 4. con-

trol signal A3, 5. control signal A4, 6. multiplexer power inlet
(DC, 13.0 V), 7. MUX2, 8. multiplexer channel enable voltage
(DC, 3.6 V), 9. MUX1, 10. oil inlet, 11. flow divider, 12. sens-

ing channel, 13. reservoir, and 14. oil outlet). In their latest
study,89 the flow capacity was improved to 460 mL/min
through a 3 � 3 sensor array. In order to improve sensitivity
in big flow conditions, Hong et al. analyzed axial and radial

magnetic fields for debris detection, and found the radial field
has a higher strength and uniformity than those of the axial
field in the same excitation condition. Then, they presented a

sensor structure based on a radial magnetic field as shown in
Fig. 16, which could detect 200 lm debris within a pipe with
a diameter of 20 mm.86 After that, they designed a symmetrical

structure with permanent magnets to further optimize strength
and uniformity, as shown in Fig. 17. Through this improve-
ment, 83-lm debris could be detected within a pipe with a
diameter of 12 mm under a flow rate of about 20 L/min,87

which is valuable for practical applications.
As the sensitivity of practical detection is related to both

sensor performance and environment interference, signal pro-

cessing is another effective approach to improve sensitivity
besides optimizing the structure and parameters.83,98–102 Usu-
ally, debris signature is similar to a sine wave, and environment

interference is composed by random noises and some periodi-
cal waveforms caused by mechanical vibration or AC power.
Obviously, the sensor output combined with these waveforms

is non-stationary, so a simple identification method for debris
particles is threshold algorithm as shown in Fig. 18 (ODM: oil
debris monitor), which is widely applied in practical detection.9

However, the performance of a threshold algorithm seri-

ously depends on signal quality, i.e., smaller debris could be
detected under a higher signal-to-noise ratio. Therefore, how
to increase the signal-to-noise ratio is the key point. Hong

and Liang presented an extraction method for debris signature
based on the fractional calculus technique as shown in Fig. 19,
of which the variables and algorithms are explained in Ref. 98

Fan et al.99 considered that Kurtosis is a good indicator to dis-
tinguish non-periodical debris signature from stationary inter-
ference, so they presented a time-invariant wavelet transform
combined with Kurtosis analysis as shown in Fig. 20 (TIWT:

time-invariant wavelet transform, rj: standard deviation of
the coefficients on the scale j, and N: length of sample data).
In order to eliminate random noise and the interference caused

by vibration, Bozchalooi and Liang100 presented a joint
method based on adaptive line enhancement and wavelet
threshold de-noising as shown in Fig. 21 (ALE: adaptive line

enhancement and IVE: iterative noise variance estimation).
As the decomposition depth is an important parameter in
the wavelet transform and directly affects the performance,

Li et al. presented a maximal overlap discrete wavelet trans-
form with an optimal decomposition depth as shown in
Fig. 22, of which the detail is explained in Ref. 101 With a novel
idea of de-noising, Hong et al.102 presented a hybrid method

combined with band pass filters and a correlation algorithm
as shown in Fig. 23 (x(t) is the data sampled from Sensor X,
y(t) is the data sampled from Sensor Y, and Rxy is the correla-

tion result between x(t) and y(t)), in which two signals come

Fig. 18 Debris identification based on a threshold.98

Fig. 16 Debris sensor based on a radial magnetic field.86

Fig. 17 A symmetrical structure with permanent magnets.87

Fig. 15 Parallel sensing with multiple channels.88
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Fig. 20 A time-invariant wavelet transform combined with Kurtosis analysis.99

Fig. 19 Signal extraction method based on the fractional calculus technique.98
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from two same sensors connected in series in a pipe. The exper-
iment result indicated that this method can improve sensitivity
to 2.63 times, i.e., the volume of minimum detectable debris is

reduced to 38% of that from previous detection.

6. Debris-based diagnosis

In early 1970s, based on offline measuring oil samples or fil-
ters, engineers found that debris size and concentration were

Fig. 22 A maximal overlap discrete wavelet transform with an optimal decomposition depth.101

Fig. 21 A joint method based on adaptive line enhancement and wavelet threshold de-noising.100
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apparently increased by increasing of wear severity.6 There-
fore, mechanical degradation could be known by regular deb-
ris inspections so that condition-based maintenance would be

performed. Bowen and Anderson et al. studied debris sizes
under different wear types, and found that debris size could
roughly classify wear types and indicate wear severity, espe-

cially, above 15-lm debris particles generally coming from
abnormal wear.34,37 This study provided an important founda-
tion for debris-based diagnosis. Further, Roylance and
Pocock39 analyzed 1–20 lm debris in different wear situations,

and proposed Weibull function to describe the debris distribu-
tion so that the wear progress can be revealed through the dis-
tribution parameter. As research continued, many

studies3,7,68,69 indicated that the relationships between wear
type, wear mechanism, and debris feature are complicated.
In practical wear, several wear mechanisms may occur at the

same time, and several debris types would be generated. There-
fore, it is difficult to know current wear progress through clas-
sifying current debris, i.e., the debris classification result may

not determine whether a machine is normal or not.
By contrast, online debris detection not only provides deb-

ris size and number at a moment, but also shows their dynamic

processes.8,76,77 This advantage can increase confidence in
diagnosing by specified criteria. In 1980s, Centers and Price8

compared a quantitative debris monitor (QDM) to offline deb-

ris detection as shown in Fig. 24, which indicated that the sen-
sor can monitor debris generation through accumulated debris
counts. In 2000, Miller and Kitaljevich9 investigated the bear-

ing fault of an F119 engine by using a MetalSCAN sensor and
achieved fault alarm through setting a limit of accumulated
debris counts, as shown in Fig. 25. After that, Dempsey used

a MetalSCAN sensor to monitor the wear processes of gears103

and bearings104 respectively shown in Figs. 26 and 27. The
experiment results indicated that the accumulated debris mass
can also reflect the wear progress. As debris sizes are variable,

the accumulated mass is more real than accumulated counts to
measure friction damage. Nevertheless, further studies10,104

indicated that it is still difficult to determine a threshold of

the accumulated mass to distinguish fault components from

Fig. 25 Debris monitoring for an F119’s bearing based on a

MetalSCAN sensor.9

Fig. 26 Debris monitoring for gears based on a MetalSCAN

sensor103

Fig. 27 Debris monitoring for bearings based on a MetalSCAN

sensor104Fig. 24 Quantitative debris monitor vs offline debris detection.8

Fig. 23 A hybrid method combined with band pass filters and a

correlation algorithm.102
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normal ones because of an inconsistent initial state and a
variable running condition, even their distributions are very
similar as shown in Fig. 28. In addition, the underlying reason

is the cumulant of debris is little related to the physical running
status.

As debris generation is irreversible, the remaining useful life
predicted through debris information has a good convergence.

A typical debris generation behavior commonly exists in the
degradation of gears and bearings9,10,25,103–105: a few debris
particles are generated in the early and middle stages of a com-

ponent’s useful life, and the generation rate will rapidly
increase and tend to be a stable value in the late stage. There-
fore, the remaining useful life can be roughly predicted by a

simple linear model when an accumulated debris amount is
defined as the end of useful life,10 as shown in Fig. 29. How-
ever, in a complicated machine such as a wind turbine, there
are many friction pairs, and their working loads may fre-

quently change in a large range so that the debris generation
rate is variable; as a result, a simple linear model is no longer
applicable. Thus, Dupuis presented a model with combined

Fig. 28 Debris distribution comparison.25

Fig. 29 A simple linear model to predict the remaining useful life (RUL).
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average generation rates of both long term and short term to
predict the remaining useful life of a wind turbine.11 The model

is shown in Eqs. (2)–(4), where MAS is the short-term moving
average, MAL is the long-term moving average, MAW is the
weighted moving average, C is the daily accumulated count,

and n is the current day. L is the number of days of long term
while S is the number of days of short term. For the definition
of damage limit, the total mass of the expected damage area is

usually defined as the end of useful life as shown in Fig. 30.
Nevertheless, Dempsey et al. found that the ratio of total mass
to damage area is variable, so they considered a compromise to
define the maximum and minimum damage levels for the

remaining useful life,10 as shown in Fig. 31, where cups 27,
33, 35, and 36 are four bearing cups among experimental sam-
ples. In order to explain the sudden change of the debris gen-

eration rate, Hong et al.106 presented a positive feedback

mechanism to describe the behavior of debris generation as

shown in Fig. 32, and they proposed a certain level of sudden
change of the generation rate as the end of useful life. Based on
this idea, they developed a prediction model for remaining use-

ful life as shown in Eq. (5), where g is the remaining useful life,
nR is the working condition factor, Ra0 is the initial surface
roughness, and t is the running time. The predicted result for

a wind turbine indicated that the remaining useful life can be
effectively predicted in the early and middle stages of the whole
life, as shown in Fig. 33, where MAM is the moving average

model, PFM is the positive feedback model, and FLD is the
full life data. This study differs from traditional debris classifi-
cation to reveal wear behavior and is a new trial form time ser-
ies of debris generation.

MAS ¼ Cn þ Cn�1 þ . . .þ Cn�ðS�1Þ
� �

=S ð2Þ

MAL ¼ Cn þ Cn�1 þ . . .þ Cn�ðL�1Þ
� �

=L ð3Þ

MAW ¼ MAL þMAS ð4Þ

g ¼ 1

nRR
2
a0

� t ð5Þ

7. Discussion

This paper has summarized research progresses on mechanical
wear debris related fields such as wear mechanisms, debris fea-

tures, detection methods, signal processing, and fault diagno-
sis. The following conclusions can be obtained. Because of
its close relationship with friction wear, wear debris provides

powerful information for mechanical diagnosis. The related
studies indicate that wear mechanisms and types can be
roughly identified through debris features, but debris classifica-

tion may not be able to determine the wear progress because
several wear mechanisms may simultaneously exist in a practi-
cal wearing process. With the maturity of online inductive deb-
ris sensors, online debris monitoring becomes popular and

shows excellent performance on mechanical wear tracking.
As new indicators, accumulated debris mass and number can
effectively alarm mechanical fault and predict remaining useful

life. However, the accumulation may not reflect the current

Fig. 30 Definition of the damage limit.11

Fig. 31 Definitions of the maximum and minimum damage

levels.10

Fig. 32 Positive feedback model for debris generation.106
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wear status, so diagnosis results based on these indicators
would be seriously affected by individual varieties. In order

to promote wider applications of debris techniques, the
authors feel that the following issues are worth further studies.

(1) As existing debris features such as size and distribution
are difficult to determine wear progress, debris features
with time attributes, e.g., debris accumulation and gen-
eration rate, should be further investigated to reveal

wear behavior.
(2) Debris information obtained from current online detec-

tion is limited to size, number, and material type, so

enhancing online detection by including debris morphol-
ogy and composition will contribute to online fault
diagnosis.

(3) Compared to offline debris detection methods, online
debris monitoring can provide a detailed process of deb-
ris generation rather than rich information of each deb-
ris particle. Therefore, how to reveal wear modes based

on debris generation behaviors would be a significant
study.

(4) There may exist several friction surfaces in a single

machine, but with only one lubrication system, debris
generated from different friction surfaces will be mixed
together, and abnormal wear might be hidden, causing

a severe catastrophe to the machine. Therefore, how to
distinguish different debris sources and track wear pro-
cesses would also be an interesting topic.
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